• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

Biomimetic Dentistry

Less drilling! More healing!

  • Home
  • Literature
    • Thermo Cure
    • Mineralisation
    • Toxicity
    • Biocompatibility
    • Clinical Experiments
    • Compressive Strength and Flexual Strength
    • Core Builds Ups
    • Test Protocols
    • Coating
    • Sealants
  • How To Make
  • Videos
  • News
  • About Us
  • Contact
  • Calendar
  • Home
  • Literature
    • Thermo Cure
    • Mineralisation
    • Toxicity
    • Biocompatibility
    • Clinical Experiments
    • Compressive Strength and Flexual Strength
    • Core Builds Ups
    • Test Protocols
    • Coating
    • Sealants
  • How To Make
  • Videos
  • News
  • About Us
  • Contact
  • Calendar

Effect of hygroscopic expansion on the push-out resistance of glass ionomer-based cements used for the luting of glass fiber posts

5 June 2006 //  by Biodentistry.eu//  Leave a Comment

Cury AH, Goracci C, de Lima Navarro MF, Carvalho RM, Sadek FT, Tay FR, Ferrari M.
Department of Restorative Dentistry and Dental Materials, University of Siena, Siena, Italy.

Abstract

This study examined the contribution of hygroscopic expansion of glass-ionomer (GIC) and resin modified glass-ionomer (RMGIC) luting cements to the push-out resistance of fiber posts. Glass fiber posts were luted to post spaces using different cements. Experimental specimens were stored in water, while control specimens were desiccated and stored in mineral oil to eliminate water from intraradicular dentinal tubules and/or the external environment that could have contributed to hygroscopic expansion of the cements. Thin slice push-out tests revealed no difference in retention strengths of resin composite cements that were stored in water or oil. Conversely, GIC and RMGIC cements exhibited increased retention strengths after water sorption. As unfavorable cavity geometry is taxing to dentin bond integrity in root canals, a strategy that relies on increasing the frictional resistance to post dislodgement via delayed hygroscopic expansion of glass-ionomer based materials may be a more pragmatic approach to fiber post retention.

 

PMID: 16728245 [PubMed – indexed for MEDLINE] 1. J Endod. 2006 Jun;32(6):537-40. Epub 2006 Apr 4.

Category: Core Builds Ups

Previous Post: « Mechanical properties of glass ionomer cements affected by curing methods
Next Post: Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Upload

Click here to upload a picture

Mineralisation In Vivo

Latest News

  • SMART Pedodontic Conference 2023 2 September 2023
  • VIII Scientific and Training Conference of Pediatric Dentistry 2 September 2023
  • Biomimetic Dentistry at Smiles World 2 September 2023
  • Effects of storage media on the flexural strength of GIC 5 June 2020
  • Biomimetic Dentistry in Indonesia 18 January 2020

About

Biomimetic Dentistry is a new way of dentistry which takes advantages of the natural mineralization processes in the mouth without using harmfully products.

Copyright © 2023 · Powered by Ter Hoeven Services