• Menu
  • Skip to right header navigation
  • Skip to main content
  • Skip to primary sidebar

Biomimetic Dentistry

Less drilling! More healing!

  • Home
  • Literature
    • Thermo Cure
    • Mineralisation
    • Toxicity
    • Biocompatibility
    • Clinical Experiments
    • Compressive Strength and Flexual Strength
    • Core Builds Ups
    • Test Protocols
    • Coating
    • Sealants
  • How To Make
  • Videos
  • News
  • About Us
  • Contact
  • Calendar
  • Home
  • Literature
    • Thermo Cure
    • Mineralisation
    • Toxicity
    • Biocompatibility
    • Clinical Experiments
    • Compressive Strength and Flexual Strength
    • Core Builds Ups
    • Test Protocols
    • Coating
    • Sealants
  • How To Make
  • Videos
  • News
  • About Us
  • Contact
  • Calendar

Effect of light curing protocol on degree of conversion of composites

5 November 2014 //  by Biodentistry.eu//  Leave a Comment

Catelan A1, Mainardi Mdo C, Soares GP, de Lima AF, Ambrosano GM, Lima DA, Marchi GM, Aguiar FH.

Author information:

1Department of Restorative Dentistry.
Abstract
OBJECTIVE:
To evaluate the degree of conversion (DC) of two light-cured composites with different protocols of light curing.

MATERIALS AND METHODS:
One hundred and ninety two specimens (n = 8) were prepared (5 mm × 2 mm) according to experimental groups: two composite resins (Filtek Supreme and four seasons); three light curing protocols [20 s with the tip of the light curing unit (LCU) device touching composite surface (C); 20 s with the tip of the LCU at 8 mm distant from composite surface (D); and tip of the LCU at 8 mm distant from composite surface and polymerization time required to obtain a radiant exposure of 16 J/cm(2) (DS)]. Four LCUs (Bluephase 16i, Ultralume LED 5, XL 3000 and Optilux 501C) were used. DC of the bottom and top surface of specimens were measured using a FTIR spectrometer. Data were statistically analyzed by 3-way split splot ANOVA and Tukey’s test (alpha = 0.05).

RESULTS:
The results showed that DC of the top surface was higher than the bottom at all experimental conditions (p < 0.0001). Overall, the curing at 8 mm of distance did not affect conversion rate on the top surface (p > 0.05), but bottom surfaces showed DC reduction (p < 0.05). The highest monomer conversion values were observed for C and DS situations.

CONCLUSION:
The distance between the LCU and material surface and radiant exposure can affect the DC. Polymerization at distance should be performed with curing units with higher light power and/or extended exposure time.

PMID: 24856190 [PubMed – indexed for MEDLINE] 1. Acta Odontol Scand. 2014 Nov;72(8):898-902. doi: 10.3109/00016357.2014.920108. Epub 2014 May 26.

Category: Biocompatibility

Previous Post: « Adolescent bisphenol-A exposure decreases dendritic spine density: role of sex and age
Next Post: Cost-effectiveness of caries excavations in different risk groups – a micro-simulation study »

Reader Interactions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Primary Sidebar

Upload

Click here to upload a picture

Mineralisation In Vivo

Latest News

  • SMART Pedodontic Conference 2023 2 September 2023
  • VIII Scientific and Training Conference of Pediatric Dentistry 2 September 2023
  • Biomimetic Dentistry at Smiles World 2 September 2023
  • Effects of storage media on the flexural strength of GIC 5 June 2020
  • Biomimetic Dentistry in Indonesia 18 January 2020

About

Biomimetic Dentistry is a new way of dentistry which takes advantages of the natural mineralization processes in the mouth without using harmfully products.

Copyright © 2023 · Powered by Ter Hoeven Services